CONCEPTO DE CIRCUITO TRIFASICO

circuito trifasicoNikola Tesla, un inventor Serbio-Americano fue quien descubrió el principio del campo magnético rotatorio en 1882, el cual es la base de la maquinaria de corriente alterna.
Él inventó el sistema de motores y generadores de corriente alterna polifásica que da energía al planeta. Sin sus inventos el día de hoy no sería posible la electrificación que impulsa al crecimiento de la industria y al desarrollo de las comunidades.
El descubrimiento de el campo magnético rotatorio producido por las interacciones de corrientes de dos y tres fases en un motor fue uno de sus más grandes logros y fue la base para la creación de su motor de inducción y el sistema polifásico de generación y distribución de electricidad. Gracias a esto, grandes cantidades de energía eléctrica pueden ser generadas y distribuidas eficientemente a lo largo de grandes distancias, desde las plantas generadoras hasta las poblaciones que alimentan. Aún en estos días se continúa utilizando la forma trifásica de el sistema polifásico de Tesla para la transmisión de la electricidad, además la conversión de electricidad en energía mecánica es posible debido a versiones mejoradas de los motores trifásicos de Tesla.

ARBORESCENCIA EN AISLAMIENTO DE CABLES SUBTERRANEOS

arborecencias en cablesson muchos los mecanismos que pueden provocar el deterioro del sistema de aislamiento de un cable, por ahora analizaremos solo una la de mayor interés en el desarrollo técnico de aislantes de cables de distribución subterránea.
Árborescencias en los cables
Este problema se manifiesta con la formación de canales potenciales de falla que adoptan la forma de un árbol. Con frecuencia las árborescencias aparecen originadas por descargas en las cavidades, por las partículas de impurezas, o por imperfecciones en las capas adyacentes al material aislante; o por la humedad que penetra en el polietileno extruido, siendo causa de la arborescencia. En los dieléctricos orgánicos sólidos, las arborescencias parecen ser el mecanismo más probable de falla eléctrica a largo plazo, en comparación con la falla catastrófica más rápida. Puntualizando, las causas de la aparición de la arborescencia se pueden clasificar como: eléctrica, agua y electroquímica, todos ellos se inician en lugares de altos esfuerzos eléctricos.
Arborescencias de Agua
La causa principal de envejecimiento del aislamiento y subsecuentes fallas en el caso de cables extruidos son las árborescencias de agua, los cuales representan un verdadero cáncer para aislamientos XLPE y EPR. Este tipo de defecto crece y madura debido a un proceso de electroforesis en los cables extruidos. Cuando se desarrolla la arborescencia, se forman canales electro-oxidados de muy poco diámetro que siguen la dirección del campo eléctrico y tratan de puentear el aislamiento.
El establecimiento de un campo eléctrico aumenta la penetración de la humedad en los materiales orgánicos, con resultados nocivos. El polietileno tiene una permeabilidad más baja para la humedad que cualquier otro plástico, excepto el PVC. Para que crezcan las arborescencias de agua, se requiere que existan esfuerzos de agua y de CA. Cuando la concentración de agua aumenta, la tensión que origina las arborescencias de agua disminuye.
Así la degradación por arborescencias de agua, siempre asociadas a la humedad, tendrá crecimiento lento (meses, años), probablemente con vacíos discretos separados por el aislamiento, pero distintivamente, el aislamiento debe estar manchado para verlos.
Esto puede ser resultado de los productos químicos en o alrededor del cable, o bien, puede ser manchado al momento de examinar el cable. Los contaminantes solubles, como las sales, son particularmente dañinos porque propician la oxidación.

MATERIAL FLEXIBLE HASTA 50% MAS DURO QUE EL ACERO

Material flexible molibdeno laminaEl disulfuro de molibdeno es un material parecido al grafito, muy abundante en la Tierra y que se ha revelado como una de las claves del futuro de la electrónica flexible, al presentar mejores rendimientos que los semiconductores orgánicos utilizados hasta el momento. Ahora un grupo de investigación español y holandés ha estudiado las propiedades mecánicas de este material en un trabajo pionero publicado en la revista Advanced Materials.
Para estudiar este prometedor material los científicos de la Universidad Autónoma de Madrid y la Universidad Tecnológica de Delft (Países Bajos) crearon láminas hasta cien mil veces más delgadas que un folio de papel y estudiaron su comportamiento con un microscopio de fuerzas atómicas. Con él consiguieron determinar la fuerza necesaria para deformar la membrana y romperla. Según el trabajo de los científicos, las nanoláminas de disulfuro de molibdeno son hasta un 50 por ciento más duras que el acero con la peculiaridad de que son “sorprendentemente flexibles”.
Estas propiedades abren un mundo de posibilidades para la electrónica del futuro, pues utilizando plásticos como sustratos, capas ultrafinas de compuestos como el disulfuro de molibdeno o el grafeno pueden actuar mejor que los semiconductores actuales. Además, como indican desde la Universidad Autónoma, sus aplicaciones no solo se limitan a envases y revistas con pantallas flexibles, sino que también podría utilizarse para crear sensores versátiles como por ejemplo para controlar los daños estructurales de un edificio o adheridos a la ropa para monitorizar pacientes.
El disulfuro de molibdeno proviene de la molibdenita, un mineral muy abundante similar al grafito tanto en apariencia como en tacto, que se produce en depósitos minerales hidrotermales de alta temperatura.

TELAS SOLARES FLEXIBLES DE SILICONA

tejido solarPor primera vez, una fibra óptica basada en silicio con capacidades de células solares ha sido desarrollada. La investigación abre la puerta a la posibilidad de tejer hilos de células solares de silicio para crear telas solares flexibles, curvas, o trenzadas. Los hallazgos son de un equipo internacional de químicos, físicos e ingenieros, liderados por John Badding, profesor de química en la Universidad de Penn State. Los nuevos hallaszgos se basan en trabajos anteriores al afrontar el reto de la fusión de las fibras ópticas con chips electrónicos – circuitos integrados basados en silicio que funcionan como bloques de construcción para la mayoría de dispositivos electrónicos semiconductores como células solares, ordenadores y teléfonos móviles. En lugar de combinar un chip plana con una fibra óptica ronda, el equipo encontró una manera de construir un nuevo tipo de fibra óptica – que es más delgado que el grosor de un cabello humano. Para ello, utilizaron técnicas de química de alta presión para depositar materiales semiconductores directamente, capa por capa, en los agujeros minúsculos en las fibras ópticas. En la nueva investigación, han utilizado las técnicas de química de alta presión para hacer una fibra a partir de materiales semiconductores de silicio cristalino que puede funcionar como una célula solar – un dispositivo fotovoltaico que puede generar energía eléctrica mediante la conversión de la radiación solar en electricidad de corriente continua.  Este tipo de tejido tendria una amplia gama de aplicaciones, tales como la generación de energía, la carga de la batería, detección química, y dispositivos biomédicos.

Fuente:  Penn State Sciencie

EL GRAFENO Y EL EFECTO HALL CUANTICO FRACCIONARIO

grafeno efecto hall¿Hay algo que no pueda hacer el grafeno? Sus propiedades son realmente extraordinarias y en parte por que se ha convertido en un tema “de moda” entre los físicos, el grafeno es noticia prácticamente todos los días. Miles de laboratorios alrededor del mundo se encuentran trabajando con este material, buscando aplicaciones prácticas (y patentes rentables) por lo que no es extraño que periódicamente se le descubran nuevas propiedades. Uno de los últimos hallazgos proviene de un equipo de físicos de EE.UU. (Universidad de Harvard ) y Alemania (Instituto Max-Planck de Física del Estado Sólido), liderados por Amir Yacoby, que ha descubierto en el grafeno lo que llaman “efecto Hall cuántico fraccionario” (FQHE, por fractional quantum Hall effect).
– Este efecto tiene lugar cuando los portadores de carga (básicamente electrones) se encuentran confinados en un espacio 2D y son atravesados perpendicularmente, a lo largo del eje Z, por un campo magnético. El grafeno, como ya hemos explicado alguna vez, es una retícula bidimensional de átomos, por lo que era un buen candidato para buscar en él este efecto. Cuando se induce una corriente a lo largo del eje X de esta malla, aparece una tensión -denominada tensión de Hall- en la dirección Y. A temperaturas muy bajas, esta tensión se cuantifica en etapas diferentes o estados Hall. El FQHE difiere del efecto Hall cuántico entero más conocido. Aparece como resultado de las interacciones fuertes que se producen entre los electrones, provocando que estos portadores de carga se comportan como cuasi-partículas, con una carga que es una fracción de la de un electrón. Estas cuasi-partículas de carga fraccionada  son las responsables del FQHE y, posiblemente, una característica muy útil para el desarrollo de futuros ordenadores cuánticos.

LUMINOSIDAD CUANTICA EN LOS NANOHILOS

Luminosidad-cuantica-en-los-nanohilos_image365_
Una investigación ha desarrollado una nueva estructura cuántica capaz de emitir fotones individuales de color rojo. El avance, que se publica en la revista Nature Materials, se basa en el confinamiento cuántico que se genera en cada uno de los puntos y que les permite modular la energía de la luz que emiten.
En este trabajo han participado investigadores de la Universidad de Zaragoza, el Institut de Recerca en Energia de Catalunya (IREC), la Universidad de Barcelona y del Instituto de Ciencia de Materiales de Barcelona del CSIC.
El investigador Jordi Arbiol de este último explica: “El resultado final son hilos unidimensionales, de tamaño nanométrico, compatibles con la tecnología electrónica actual, que permitirían crear dispositivos a mayor escala con un control total de la emisión de luz, fotón a fotón”.
Según el también profesor del ICREA, esta “es la primera vez que se consigue crear, visualizar y analizar este tipo de estructuras”.
La luz emitida por estos puntos cuánticos tiene una gran pureza o monocromaticidad, y su intensidad es superior a la de otros sistemas similares utilizados hasta el momento.
El director del IREC, Joan Ramón Morante, que también ha participado en el trabajo, augura “la posible utilización de estos nuevos sistemas para aplicaciones energéticas avanzadas”.
Para la investigadora de la Escuela Politécnica Federal de Lausana (Suiza), coautora del trabajo, Anna Fontcuberta, “el hallazgo también supondrá un avance en el área de la información cuántica, ya que su emisión es extremadamente brillante y el ancho de línea muy delgado”.
Nature Materials.

EL GRAFENO CONVIERTE LA LUZ EN ELECTRICIDAD

El-grafeno-convierte-la-luz-en-electricidad_image365_
Un equipo del Instituto de Ciencias Fotónicas (ICFO), en colaboración con el Massachussets Institute of Techology de Estados Unidos, el Max Planck Institute for Polymer Research de Alemania y Graphenea S.L. de Donostia-San Sebastián, muestran en Nature Physics que el grafeno es capaz de convertir un fotón absorbido en múltiples electrones que pueden conducir corriente eléctrica.
Este prometedor descubrimiento convierte el grafeno en una importante alternativa para la tecnología de energía solar, actualmente basada en semiconductores convencionales como el silicio.
“En la mayoría de los materiales, un fotón absorbido genera un solo electrón, pero en el caso del grafeno hemos visto que un fotón absorbido es capaz de producir muchos electrones excitados, y por lo tanto una señal eléctrica mayor” explica Frank Koppens, líder del grupo de la investigación en ICFO.
Esta característica hace del grafeno el ladrillo ideal para la construcción de cualquier dispositivo que quiera convertir la luz en electricidad. En particular, permite la producción de potenciales células solares y detectores de luz que absorban la energía del sol con pérdidas mucho menores.
El experimento ha consistido en mandar un número conocido de fotones a diferentes energías sobre una capa fina de grafeno. “Hemos visto que los fotones de alta energía –por ejemplo, los de color violeta– inducen un mayor número de electrones excitados que los fotones de baja energía –por ejemplo, los infrarrojos–”, explica Klass-Jan Tielrooij, investigador del ICFO que ha realizado el experimento.
“En ambos casos siempre era igual o superior al número de fotones mandado –prosigue–. Esta relación nos muestra que el grafeno convierte la luz en electricidad con una eficiencia muy alta. Hasta ahora se especulaba que el grafeno tenía un gran potencial para convertir luz en electricidad, pero ahora hemos visto que es incluso mejor de lo esperado”.
Aunque aún hay algunos aspectos que los científicos están tratando de mejorar, como la baja absorción del número de fotones, el grafeno tiene el potencial de provocar cambios radicales en muchas tecnologías actualmente basadas en semiconductores convencionales.
El próximo reto
“Se sabía que el grafeno es capaz de absorber un espectro muy grande de colores de la luz. Sin embargo, ahora sabemos que una vez el material ha absorbido esta luz, la eficiencia de conversión de energía es muy alta. Nuestro próximo reto será encontrar formas para extraer la corriente eléctrica y mejorar la absorción del grafeno. Entonces seremos capaces de diseñar dispositivos de grafeno que detectan la luz de manera más eficiente, dando paso a células solares más eficientes “, concluye Koppens.
Todo parece indicar que en las próximas décadas se va a vivir un cambio de paradigma con el grafeno similar al que ocurrió con el plástico el siglo pasado. Móviles que se pliegan, placas solares trasparentes y flexibles, ordenadores muy delgados… se podrán desarrollar con grafeno.
Las industrias y autoridades están convencidos de su gran potencial para revolucionar la economía mundial. Tal es así que la Unión Europea acaba de comprometer una inyección de 1.000 millones de euros para su desarrollo.
Nature Physics, 24 de febrero de 2013.

¿TIENE ESPIN EL NUEVO BOSON DESCUBIERTO EN EL CERN?

boson-higgs
La semana pasada el director del CERN, Rolf Heuer, explicaba a SINC que pronto se podría decir que la partícula que descubrieron el año pasado es un autentico bosón de Higgs, en lugar de una parecida, un Higgs-like boson, como hasta ahora. Pero habrá que tener un poco más de paciencia, según los físicos reunidos estos días en La Thuile (Italia). La clave está en confirmar que una propiedad de la partícula, su espín, sea cero.
Una partícula de espín 0 –como un bosón de Higgs– es como un punto, según Stephen Hawking. Si su valor es 1 sería como una carta que hay que girar 360º para verla igual, pero si es 2 bastaría con darla media vuelta o 180º.
“Hasta que podamos delimitar con seguridad su espín, la partícula seguirá siendo un Higgs-like boson –bosón parecido a un higgs–”, subraya el director de Investigación del Laboratorio Europeo de Física de Partículas (CERN), Sergio Bertolucci, “y solo cuando sepamos que esa propiedad es cero podremos llamarlo un bosón de Higgs”.
La declaración se refiere a la famosa partícula descubierta el año pasado en ese centro y se ha facilitado durante los encuentros científicos de Moriond que se celebran estos días en La Thuile (Italia). La semana pasada el director del CERN, Rolf Heuer, ya habló sobre este asunto en la Universidad de Oviedo y expresó su confianza en que pronto se pueda confirmar que el espín sea 0.
Ahora, los científicos insisten en que se requieren más análisis antes de ofrecer una afirmación definitiva sobre la partícula, aunque es verdad que los datos apuntan cada vez más a que es un bosón de Higgs. La clave para su identificación positiva es ver sus características y cómo interacciona con otras partículas.
La propiedad clave es el espín o momento angular –o de rotación– intrínseco. Si tiene espín nulo, entonces es un higgs, como apuntan con fuerza todos los datos hasta el momento. Pero si no, es algo diferente, posiblemente relacionado con la forma en que trabaja la gravedad. El resto de las partículas tienen un espín de ½ o 1, pero en este caso concreto hay que descartar una posibilidad remota, que su valor sea 2.
El concepto de espín no es fácil de entender. Según el científico Stephen Hawking en su libro Breve Historia del Tiempo “lo que nos dice realmente el espín de una partícula es cómo se muestra desde distintas direcciones”.
Una partícula de espín 0, como un bosón de Higgs, es como un punto: parece la misma desde todas las direcciones. Por el contrario, si su valor es 1 es como una flecha: parece diferente desde direcciones distintas y sólo si se gira una vuelta completa –360º– la partícula parece la misma.
El tema se complica con las partículas con espín ½, que no parecen las mismas al girarlas una vuelta. Hay que dar dos vueltas completas para conseguirlo, algo difícil de imaginar.
Por su parte, una partícula de espín 2 –como lo que tratan ahora de descartar los físicos– es como una flecha con dos cabezas: parece la misma si se gira solo media vuelta o 180º. Considerando el campo gravitatorio desde el punto de vista de la mecánica cuántica, la fuerza entre dos partículas materiales se transmite por una partícula de espín 2 que todavía no se ha observado: el gravitón.
Este asunto también lo están investigando los científicos del CERN, que incluso aunque descarten que el nuevo bosón tenga un espín 2 y efectivamente sea 0 como un higgs, todavía tendrán un largo trabajo por delante. El siguiente paso, que puede llevar años, sería confirmar si ese bosón es el largamente buscado del modelo estándar o algo más exótico.

VENTAJAS Y DESVENTAJAS DE LOS FOCOS LED

En este post, comentare sobre las múltiples ventajas que puedes aprovechar si apuestas por utilizar focos LED en tu casa, también mencionare sobre las desventajas que son mínimas y a mi forma de verlo no son necesariamente una desventaja. Los focos LED en un principio puede ser costosos, pero te aseguro que en pocos años recuperarás tu inversión y comenzarás a ahorrar enormes cantidades de energía y dinero. Te recomiendo comenzar con sólo 2 focos LED de prueba y ya verás cómo notarás la reducción de tu recibo desde el primer bimestre ( en México se paga de esta forma) Ventajas de los focos LED Los focos LED tienen muchas ventajas en cualquier aspecto comparándolos con los focos incandescentes, pero también tienen muchas ventajas sobre los focos ahorradores. -Consumen 85% menos energía que sus competidores. Puedes verificarlo usando la calculadora de la siguiente liga: http://187.174.219.24:8080/SitePages/Calculadora.aspx -Tienen un periodo de vida de 10 o 15 años, por lo tanto no tendrás que comprar nuevos focos para sustituirlos. -Los focos LED no producen calor así que el ambiente en general es más fresco. -La tecnología LED transforma directamente en luz monocromática por lo tanto no genera emisiones de luz ultravioleta ni infrarroja. -Con los focos LED puedes dirigir la luz a solamente el área deseada, no como los focos actuales que alumbran omnidireccionalmente. -Se encienden al instante. -Los focos LED duran hasta 100,000 horas, mientras que sus competidores duran entre 2 mil y 6 mil horas, es decir duran 17 veces más. -Los focos LED son más amigables con el medio ambiente ya que no contienen contaminantes como el mercurio, cadmio y plomo que usan los focos convencionales. -No necesitan Mantenimiento. A pesar de su larga vida, las luces LED no necesitan de ningún mantenimiento, algo que se vuelve muy importante cuando se instalan en lugares de difícil acceso para limpiar ó cambiar el foco. -Son reciclables y cumplen con la normativa europea de sustancias contaminantes RoHS. Desventajas de los focos LED -Los focos LED son direccionales, por lo que no se pueden utilizar para todas las aplicaciones. -El costo de los focos LED

Esta probablemente sea la mayor desventaja y la única, pero pensándolo bien podría no ser una desventaja. Los LED en comparación con sus competidores son mucho más costosos pero el precio se compensa sabiendo que es un foco que durará 10 veces más y ahorrara fácilmente el 50% de energía, lo que proporciona un retorno de inversión cuando llegan al 25% de su vida útil.