EL GRAFENO Y EL EFECTO HALL CUANTICO FRACCIONARIO

grafeno efecto hall¿Hay algo que no pueda hacer el grafeno? Sus propiedades son realmente extraordinarias y en parte por que se ha convertido en un tema “de moda” entre los físicos, el grafeno es noticia prácticamente todos los días. Miles de laboratorios alrededor del mundo se encuentran trabajando con este material, buscando aplicaciones prácticas (y patentes rentables) por lo que no es extraño que periódicamente se le descubran nuevas propiedades. Uno de los últimos hallazgos proviene de un equipo de físicos de EE.UU. (Universidad de Harvard ) y Alemania (Instituto Max-Planck de Física del Estado Sólido), liderados por Amir Yacoby, que ha descubierto en el grafeno lo que llaman “efecto Hall cuántico fraccionario” (FQHE, por fractional quantum Hall effect).
– Este efecto tiene lugar cuando los portadores de carga (básicamente electrones) se encuentran confinados en un espacio 2D y son atravesados perpendicularmente, a lo largo del eje Z, por un campo magnético. El grafeno, como ya hemos explicado alguna vez, es una retícula bidimensional de átomos, por lo que era un buen candidato para buscar en él este efecto. Cuando se induce una corriente a lo largo del eje X de esta malla, aparece una tensión -denominada tensión de Hall- en la dirección Y. A temperaturas muy bajas, esta tensión se cuantifica en etapas diferentes o estados Hall. El FQHE difiere del efecto Hall cuántico entero más conocido. Aparece como resultado de las interacciones fuertes que se producen entre los electrones, provocando que estos portadores de carga se comportan como cuasi-partículas, con una carga que es una fracción de la de un electrón. Estas cuasi-partículas de carga fraccionada  son las responsables del FQHE y, posiblemente, una característica muy útil para el desarrollo de futuros ordenadores cuánticos.

Anuncios

EL MATERIAL QUE NO PODIA EXISTIR

el material que no podia existirEl grafeno es uno de esos materiales que hace sólo unos pocos años “no podían existir”; pero que ahora se ha convertido en uno de los temas más candentes en la investigación de nuevos materiales, con centenares de laboratorios y universidades volcados en dilucidar y aprovechar sus sorprendentes propiedades.

El grafeno es, simplemente, una capa cristalina de carbono de sólo un átomo de espesor. Se la ha comparado con una reja de gallinero molecular, en la que cada átomo de carbono se une a tres átomos contiguos formando una pauta de hexágonos, parecida a un panal de abeja.
Hace ya muchos años una estructura semejante aparecía hasta en los libros elementales de física para ilustrar la diferencia entre el diamante y el grafito. En el primero, los átomos de carbono están apilados simétricamente en forma de pequeñas pirámides: La unión entre ellos es muy fuerte en cualquier dirección y de ahí la enorme dureza de esa piedra; en cambio, en el grafito la estructura es planar: Cada capa de átomos mantiene enlaces muy fuertes con los átomos contiguos, pero débiles con las otras capas. Por eso el grafito se exfolia con tanta facilidad.
El grafeno no es más que una simple capa de grafito inconcebiblemente fina. Pero precisamente por estar en el límite de lo imaginable, no puede estudiarse con las técnicas convencionales que se aplican a otros materiales, como el hierro o el cemento. Su comportamiento responde a las leyes de la física atómica, incluidos efectos cuánticos y relativistas. Hay que manejar conceptos exóticos como bandas de energía, fermiones de Dirac, constantes de estructura fina, o efecto Hall anómalo…
En el grafeno aparecen también electrones y “huecos” libres como portadores de carga eléctrica, un concepto familiar para quienes hace cincuenta años estudiaban el comportamiento íntimo de los primeros semiconductores. Eso apunta a la posibilidad de utilizar este material como base para nuevos dispositivos electrónicos. De hecho, sobre grafeno se han fabricado ya transistores de efecto de campo, unos dispositivos electrónicos capaces de conmutar a gran velocidad, y algunos prototipos simples de circuitos integrados. Es sólo cuestión de tiempo que aparezcan los primeros procesadores de grafeno.
Se conoce ya casi una docena de métodos de producción de este material. El más antiguo consiste simplemente en escribir con un lápiz blando: Al rozar sobre el papel, la mina se descama y desprende diminutos fragmentos de grafeno. El que le valió el Nobel de 2010 a André Geim (compartido con Konstantin Novoselov) se basa en arrancar delgadas capas de grafito mediante cinta adhesiva y luego disolver ésta para recuperar las delgadas capas de átomos.
Otros métodos industriales se basan en depósito epitaxial (ir depositando átomos de carbono sobre un sustrato de silicio o metal, como se hace en la fabricación de ciertos semiconductores) o tratamientos químicos a partir de compuestos de sodio, celulosa o la combustión de magnesio sobre hielo carbónico.
La promesa del grafeno se apoya en sus sorprendentes propiedades en muchos campos. De entrada, estas diminutas cadenas constituyen uno de los materiales más resistentes, cientos de veces más que el propio acero. Se han fabricado muestras de “papel de grafeno”, más flexibles, ligeras y duras que el metal. De hecho, éste es uno de los materiales-milagro que ahora investiga la industria aeronáutica.
El grafeno presenta sorprendentes propiedades ópticas. Una capa monoatómica absorbe exactamente el 2,3% de la luz blanca que lo atraviesa. Esta cifra es justo “pi” veces la constante de estructura fina, una de las constantes básicas de la física atómica. Lo cual implica que puede utilizarse como patrón de definición universal de esa cantidad. Además, la aplicación de un campo eléctrico altera sus propiedades ópticas, lo que permitrá aplicaciones que van desde lásers de estado sólido hasta conmutadores optoelectrónicos de gran velocidad.
“La estructura única y la propiedades del grafeno le dan el potencial para impactar en numerosos sectores industriales”, declaró en cierta ocasión Tomas Palacios, primer director del CG, centro de investigación de grafeno del Masasuchets Institute of Technology (MIT).
Sus aplicaciones van de lo más tech a lo más común, del internet ultrarrápido a las plantillas desodorantes para el calzado. Otras posibles aplicaciones son la fabricación de pantallas táctiles (aprovechando su transparencia y alta conductividad eléctrica), sensores de diversos tipos (el grafeno ofrece una gran superficie con espesor casi nulo), células solares flexibles (que quizás podrían “imprimirse” directamente sobre el dispositivo a alimentar), secuenciadores de ADN y condensadores eléctricos de gran capacidad (otras consecuencias de la gran superficie que ofrece el grafeno por unidad de peso). Incluso se ha observado cierto poder bactericida. Quizá en el futuro la envoltura de los tomates del super en lugar de plástico será de grafeno.