“EMBUDO” PARA APROVECHAR MEJOR LA ENERGIA SOLAR

Embudo
Los esfuerzos de la comunidad científica encaminados hacia el objetivo de lograr aprovechar para la generación de electricidad una porción mayor del espectro de la radiación solar que llega a la Tierra, se han visto recompensados recientemente con el surgimiento de un concepto revolucionario y muy prometedor: un “embudo” para la energía solar, basado en materiales operando bajo tensión elástica.
En este concepto desarrollado por el equipo de Ju Li y Xiaofeng Qian del Instituto Tecnológico de Massachusetts (MIT), en Cambridge, Estados Unidos, con la colaboración de la Universidad de Pekín en China, el término “embudo” es una metáfora: Los electrones y los “huecos”, separados de los átomos por la energía de los fotones, son conducidos al centro de la estructura por fuerzas electrónicas, no por gravedad como en un embudo corriente.
El material, un compuesto de molibdeno, es una lámina estirada de material delgado, con su centro presionado hacia abajo por una aguja microscópica.
La presión ejercida por la aguja causa una tensión elástica que aumenta hacia el centro de la lámina. Este gradiente de tensión cambia la estructura atómica del modo preciso para “sintonizar” diferentes longitudes de onda de la luz con secciones diferentes de la lámina, abarcando de este modo una porción más amplia del espectro de la luz solar, con la consecuencia de un mejor aprovechamiento energético de la radiación emitida por el Sol.
El concepto del “embudo” para energía solar. (Imagen: Yan Liang / MIT)
La tensión estructural experimentada por un material al ser presionado o estirado no es de una sola clase. Un muelle que se comprime cuando lo apretamos y se expande cuando lo liberamos es un ejemplo de tensión elástica, distinta de la experimentada por una hoja de papel de estaño cuando la arrugamos hasta formar una bolita con ella. El nuevo diseño de embudo de energía solar se basa en controlar con precisión la tensión elástica a fin de gobernar el potencial de los electrones en el material.
Parece evidente que la manipulación precisa de la tensión elástica en los materiales constituye un nuevo y prometedor campo de investigación y desarrollo.

Anuncios

VOLTAJE GENERADO POR UN EFECTO TERMOELÉCTRICO

VOLTAJE GENERADO POR UN EFECTO TERMOELÉCTRICO

Unos investigadores que estaban estudiando un efecto magnético que convierte calor en electricidad han descubierto cómo amplificarlo mil veces, un primer paso para hacer que esta tecnología sea más práctica y viable comercialmente.

El efecto en cuestión, llamado efecto Seebeck de espín, fue descubierto en 2008, y consiste en una redistribución del espín como consecuencia de la aplicación de un gradiente de temperatura. El espín de los electrones crea una corriente en materiales magnéticos que se detecta como un voltaje en un metal adyacente.

Unos investigadores de la Universidad Estatal de Ohio han descubierto cómo crear un efecto similar en un semiconductor no magnético, y producir más energía eléctrica. A este efecto amplificado le han dado el nombre de Efecto Seebeck gigante de espín.

El equipo de científicos ha conseguido incrementar de modo espectacular la cantidad de voltaje producido por grado de cambio de la temperatura dentro del semiconductor, pasando de los pocos microvoltios que hasta ahora se lograban por la vía convencional, a varios milivoltios, un aumento de mil veces en el voltaje.

Aunque los voltajes logrados con esta versión gigante del efecto siguen siendo diminutos, ese aumento de mil veces en el voltaje generado resulta toda una proeza tecnológica, y un importante paso hacia una fase futura de desarrollo que permita darle a este efecto una utilidad práctica y hacer viable comercialmente un generador basado en él.

La meta final del equipo de Joseph Heremans es lograr un dispositivo de estado sólido, que sea barato y que convierta con gran eficiencia el calor en electricidad. Los dispositivos de esta clase no tendrían ninguna pieza móvil, no se desgastarían con facilidad, y serían muy fiables.

Unos investigadores de la Universidad Estatal de Ohio han descubierto cómo crear un efecto similar en un semiconductor no magnético, y producir más energía eléctrica. (Foto: Scott Dennison/Joseph Heremans y Roberto Myers, Ohio State University)

Esta línea de investigación podría posibilitar que los dispositivos electrónicos reciclasen parte de su propio calor residual, generado electricidad extra a partir del mismo. En un ordenador, un sistema de conversión eficiente de esa clase podría hacer posible la computación energizada por calor, o, actuando a la inversa, podría proporcionar refrigeración.

Investigadores de muchas partes del mundo están trabajando para desarrollar una electrónica que se valga del espín de los electrones para leer y escribir datos. La espintrónica, que es como se le llama a esa clase de electrónica, cuenta con muchas ventajas potenciales, ya que los dispositivos espintrónicos podrían almacenar más datos en menos espacio, procesar con mayor rapidez esos datos y consumir menos energía. Y el efecto Seebeck de espín puede impulsar el concepto de la espintrónica aún más allá, al usar el calor para inducir una “corriente espintrónica”.

Por ahora, el uso práctico del efecto Seebeck gigante de espín aún está lejos en el horizonte tecnológico, puesto que primero habrá que solucionar varios impedimentos técnicos importantes. Sin embargo, el camino ya está abierto.

En el trabajo de investigación y desarrollo también han intervenido Roberto Myers, Christopher Jaworski y Ezekiel Johnston-Halperin.

CABLE ELECTRICO 10,000 VECES MAS FINO QUE UN CABELLO

Un grupo de investigadores australianos  de la Universidad de Nueva Gales del Sur anunció la creación de un cable eléctrico diez mil veces más delgado que un cabello, capaz de igual conducción eléctrica que un cable de cobre  tradicional.
El descubrimiento marca una nueva frontera para las conexiones entre los componentes electrónicos de las “computadoras cuánticas” del futuro.
“Poder efectuar conexiones de cables a esa escala microscópica será esencial para el desarrollo de los futuros circuitos electrónicos”, explicó Bent Weber, jefe del proyecto realizado en la universidad australiana, en un trabajo publicado por la revista Science.
El cable fue creado por físicos australianos y estadounidenses con cadenas de átomos de fósforo dentro de un cristal de silicio: el nanocable cuenta apenas con cuatro átomos de ancho por uno de alto.
Sin embargo su resistencia eléctrica, es decir su conductibilidad -explicaron los investigadores- no depende del espesor del cable, superando de hecho lo que describe la ley de Ohm y se enseña hasta ahora en las escuelas.
El hallazgo es esencial en la carrera internacional para desarrollar la primera “computadora cuántica”, máquinas súper veloces capaces de procesar enormes cantidades de datos en pocos segundos: una serie de cálculos que llevaría años, o incluso décadas, a las computadoras actuales.
En un cable de cobre tradicional, la electricidad se genera cuando los electrones de cobre fluyen a lo largo del conductor: pero a medida que el cable o conductor se hace más pequeño, la resistencia al flujo eléctrico se hace mayor.
Para superar este problema Weber y su equipo utilizaron microscopios especialmente diseñados con precisión atómica, que les permitieron colocar los átomos de fósforo en los cristales de silicio.
Esto permitió que el nanocable actuara como el cobre, con los  electrones fluyendo fácilmente y sin problemas de resistencia. “Estamos mostrando con esta técnica que es posible minimizar  componentes hasta la escala de pocos átomos”, indicó Weber.
Según la física Michelle Simmons, supervisora del trabajo, falta una década para que aparezcan las primeras computadoras cuánticas, pero el objetivo de los científicos es desarrollar  una computadora de este tipo donde las más pequeñas unidades de información (equivalentes a los bits de las máquinas clásicas)  serán reemplazadas por átomos de fósforo.
“Si vamos a usar átomos como bits, necesitamos cables a la  misma escala de los átomos”, observó Simmons.