EXPERIMENTO BATE EL RÉCORD MUNDIAL DE TELEPORTACIÓN CUÁNTICA

 Investigadores de Austria, Canadá, Alemania y Noruega, con financiación de la ESA, han logrado transferir las propiedades físicas de una partícula de luz, un fotón, a otra partícula mediante teleportación cuántica, estableciendo así un vínculo que cubre los 143 Km que separan el telescopio Jacobus Kapteyn, en la isla canaria de La Palma, y la Estación Óptica de Tierra de la ESA en Tenerife, de España ambas islas.

Ambas partículas deben antes ‘entrelazarse’. Una vez hecho esto, la medida de una determinada propiedad física, como la polarización o el espín, generará el mismo resultado en ambas partículas, independientemente de cuán alejadas están y sin que se transfiera físicamente ninguna otra señal entre ellas.

La teleportación cuántica no es copiar, en el sentido más estricto del término, puesto que el acto de transferir información de una partícula a otra destruye la partícula original -sus características se transfieren a la partícula entrelazada-.

Albert Einstein se refirió al fenómeno del entrelazamiento cuántico como una “espeluznante acción a distancia”, pero se trata de un fenómeno físico documentado y fundamental en una futura generación de ordenadores ultrapotentes, basados en la teleportación de bits cuánticos o qubits. También es esencial en sistemas inviolables de comunicación encriptada.

“La primera teleportación cuántica tuvo lugar en condiciones de laboratorio. El desafío aquí ha sido mantener el entrelazamiento entre ambos fotones a una distancia de 143 Km, a pesar de las perturbaciones de las condiciones atmosféricas”.

El experimento hubo de ser diseñado con el máximo cuidado, pues exigía una relación señal-ruido muy baja.

Se instalaron detectores de fotones muy sensibles, y se sincronizó los relojes en las estaciones de origen y de destino con una precisión de 3.000 millonésimas de segundo.

Con esto último los investigadores se aseguraban de que se detectaban los fotones correctos -la precisión máxima que proporciona la señal GPS es de 10.000 millonésimas de segundo-.

Los equipos tuvieron que esperar casi un año, después del fallo de un primer intento debido al mal tiempo.

Los dos telescopios están localizados en terreno volcánico, a 2.400 metros de altura, y deben hacer frente a condiciones meteorológicas duras para este tipo de medidas, como viento, lluvia, nieve y tormentas de polvo.

El experimento finalmente tuvo lugar en mayo pasado, y se logró establecer un nuevo récord en cuanto a distancia de la teleportación.

“El siguiente paso será conseguir la teleportación con un satélite en órbita, para demostrar que la comunicación cuántica es posible a escala global”, ha comentado Rupert Ursin, de la Academia Austriaca de Ciencias.

La campaña de medición entre islas se llevó a cabo en el marco del Programa de estudios Generales de la ESA para demostrar que es posible la teleportación cuántica para futuras misiones espaciales.

El experimento es también un excelente ejemplo de cómo los científicos de diferentes Estados Miembros de la ESA pueden aunar fuerzas y llevar a cabo experimentos extraordinarios con la Estación Óptica de Tierra de la ESA. (Fuente: ESA)

Anuncios

¿POR QUE EMPLEAR EL COBRE EN LA ELABORACIÓN DE CONDUCTORES ELÉCTRICOS?

Hay muchas razones técnicas que respaldan el uso del cobre como material para los conductores eléctricos, pero la principal es la confiabilidad probada que éste posee.
Las razones de éxito que ha tenido el cobre se basan en su conductividad eléctrica y sus propiedades mecánicas, puesto que su capacidad de conducción de corriente lo convierte en el más eficiente conductor eléctrico, en términos económicos.
Podemos asegurar que el cobre –debido a su mayor capacidad de corriente para un calibre dado, a igual espesor de aislamiento que los cables de aluminio– puede instalarse en tubos (conduit), ductos, charolas o canaletas de menor tamaño. Es decir, los conductores de cobre minimizan los requerimientos de espacio.
Esto resulta útil si se toma en cuenta que un aumento en el diámetro de los tubos (conduit), ductos o canaletas, en conjunto con el espacio requerido por el alambrado, incrementa los costos de instalación al igual que todos los componentes que integran ésta (por ejemplo las cajas de conexión, chalupas, etcétera).
El aluminio ha tenido éxito como conductor eléctrico en líneas de transmisión y distribución aéreas, pero no así como conductor eléctrico para cables de baja tensión en aplicaciones de la industria de la construcción.
El aluminio presenta problemas en las conexiones debido a sus propiedades físicas y químicas, ya que bajo condiciones de calor y presión este material se dilata y, por tanto, se afloja en las conexiones.
Las terminales de equipos, aparatos, dispositivos, etc., son fabricadas con cobre, cobre estañado o aleaciones de cobre, los cuales en la tabla de electronegatividad tienen valores similares, en tanto el aluminio –al estar más alejado de ellos en esta tabla de electronegatividad– presenta problemas de corrosión galvánica.
Como conclusión podemos decir que el cobre, además de ser mejor conductor que el aluminio, es mecánica y químicamente más resistente. Lo anterior significa que soporta alargamientos (proceso de instalación de los cables dentro de la canalización), reducción de sección por presión (en los puntos de conexión cuando el tornillo opresor sujeta a los conductores), mellas y roturas (en el proceso mecánico de conexión).
El óxido que se forma en las conexiones donde el conductor de aluminio no tiene aislamiento es de tipo no conductor, ocasionando puntos calientes en ellas y un riesgo en la instalación eléctrica.